Thursday, September 11, 2014

CANNABINOIDS INCREASE LUNG CANCER CELL LYSIS (cell breakdown) BY LYMPHOKINE-ACTIVATED KILLER CELLS VIA UPREGULATION OF ICAM-1

http://www.ncbi.nlm.nih.gov/pubmed/25069049

Biochem Pharmacol. 2014 Jul 25. pii: S0006-2952(14)00420-1. doi: 10.1016/j.bcp.2014.07.014. [Epub ahead of print]

Abstract

Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study addressed the impact of cannabinoid-induced ICAM-1 on cancer cell adhesion to lymphokine-activated killer (LAK) cells and LAK cell-mediated cytotoxicity. Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody. Increased cancer cell lysis by CBD was likewise abrogated when CBD-induced ICAM-1 expression was blocked by specific siRNA or by antagonists to cannabinoid receptors (CB1, CB2) and to transient receptor potential vanilloid 1. In addition, enhanced killing of CBD-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen-1 (LFA-1) suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ9-tetrahydrocannabinol (THC) and R(+)-methanandamide, a stable endocannabinoid analogue. Finally, each cannabinoid elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less pronounced (CBD, THC) or absent (R(+)-methanandamide) ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell susceptibility to LAK cell-mediated cytolysis. These findings provide proof for a novel antitumorigenic mechanism of cannabinoids.
Copyright © 2014. Published by Elsevier Inc.


Lysis

From Wikipedia, the free encyclopedia
This article is about the biological definition of the word Lysis. For other uses, see Lysis (disambiguation).
Lysis (/ˈlsɪs/; Greek λύσις lýsis, "a loosing" from λύειν lýein, "to unbind") refers to the breaking down of a cell, often by viral, enzymic, or osmotic mechanisms that compromise its integrity. A fluid containing the contents of lysed cells is called a "lysate".

No comments:

Post a Comment