Monday, July 14, 2014

New research reveals how cannabis compound could slow tumour growth

http://www.uea.ac.uk/mac/comm/media/press/2014/July/cancer-cannabis

Mon, 14 Jul 2014

Scientists at the University of East Anglia have shown how the main psychoactive ingredient in cannabis could reduce tumour growth in cancer patients.

Research published today reveals the existence of previously unknown signaling platforms which are responsible for the drug’s success in shrinking tumours.

It is hoped that the findings could help develop a synthetic equivalent with anti-cancer properties.

The research was co-led with the Universidad Complutense de Madridin, Spain. The team used samples of human cancer cells to induce tumours in mice. They then targeted the tumours with doses of the cannabis compound THC (Tetrahydrocannabinol). They found that two cell receptors in particular were responsible for the drug’s anti-tumour effects.

Dr Peter McCormick, from UEA’s school of Pharmacy, said: “THC, the major active component of marijuana, has anti-cancer properties. This compound is known to act through a specific family of cell receptors called cannabinoid receptors. However, it was unclear which of these receptors were responsible for the anti-tumour effects of THC.

“We show that these effects are mediated via the joint interaction of CB2 and GPR55 - two members of the cannabinoid receptor family. Our findings help explain some of the well-known but still poorly understood effects of THC at low and high doses on tumour growth.

There has been a great deal of interest in understanding the molecular mechanisms behind how marijuana, and specifically THC, influence cancer pathology.

“There has also been a drive in the pharmaceutical industry to create synthetic equivalents that might have anti-cancer properties.

“By identifying the receptors involved we have provided an important step towards the future development of therapeutics that can take advantage of the interactions we have discovered to reduce tumour growth.”

Dr McCormick added that cancer sufferers should not be tempted to self-medicate.

“Our research uses an isolated chemical compound and using the correct concentration is vital. Cancer patients should not use cannabis to self-medicate, but I hope that our research will lead to a safe synthetic equivalent being available in the future.”

‘Targeting CB2 –GPR55 receptor heteromers modulates cancer cell signalling’ is published in the Journal of Biological Chemistry.

Monday, April 28, 2014

Cannabis extract treatment for terminal acute lymphoblastic leukemia with a Philadelphia chromosome mutation.

Authors
  • 1Brampton, Ont., Canada.
  • 2Ajax, Ont., Canada.

Abstract

Acute lymphoblastic leukemia (ALL) is a cancer of the white blood cells and is typically well treated with combination chemotherapy, with a remission state after 5 years of 94% in children and 30-40% in adults. To establish how aggressive the disease is, further chromosome testing is required to determine whether the cancer is myeloblastic and involves neutrophils, eosinophils or basophils, or lymphoblastic involving B or T lymphocytes. This case study is on a 14-year-old patient diagnosed with a very aggressive form of ALL (positive for the Philadelphia chromosome mutation). A standard bone marrow transplant, aggressive chemotherapy and radiation therapy were revoked, with treatment being deemed a failure after 34 months. Without any other solutions provided by conventional approaches aside from palliation, the family administered cannabinoid extracts orally to the patient. Cannabinoid resin extract is used as an effective treatment for ALL with a positive Philadelphia chromosome mutation and indications of dose-dependent disease control. The clinical observation in this study revealed a rapid dose-dependent correlation.

KEYWORDS:

Acute lymphoblastic leukemia, Cannabinoids, Hemp oil, Philadelphia chromosome

http://www.ncbi.nlm.nih.gov/pubmed/24474921






Tuesday, April 22, 2014

The Side Effects of Chemotherapy on the Body


Cancer cells divide more quickly than healthy cells, and chemotherapy drugs effectively target those cells. Unfortunately, fast-growing cells that are healthy can be damaged too. There are many different chemotherapy drugs with the potential for many different side effects. These effects vary from person to person and from treatment to treatment.

The Side Effects of Chemotherapy on the Body Cancer cells divide more quickly than healthy cells, and chemotherapy drugs effectively target those cells. Unfortunately, fast-growing cells that are healthy can be damaged too. There are many different chemotherapy drugs with the potential for many different side effects. These effects vary from person to person and from treatment to treatment.

Factors that play a role in side effects include other ongoing treatments, previous health issues, age, and lifestyle. Some patients experience few side effects while others feel quite ill. Although most side effects clear up shortly after treatment ends, some may continue well after chemotherapy has ended, and some may never go away. Chemotherapy drugs are most likely to affect cells in the digestive tract, hair follicles, bone marrow, mouth, and reproductive system. However, cells in any part of the body may be damaged. 

See more at: http://www.healthline.com/health/cancer/effects-on-body#sthash.FCZnXkCW.dpuf

Friday, January 31, 2014

Cannabis oil helping leukemia

Cannabis extract treatment for terminal acute lymphoblastic leukemia with a Philadelphia chromosome mutation.

 

Case Rep Oncol. 2013 Nov 28;6(3):585-92. doi: 10.1159/000356446. eCollection 2013.

Abstract

Acute lymphoblastic leukemia (ALL) is a cancer of the white blood cells and is typically well treated with combination chemotherapy, with a remission state after 5 years of 94% in children and 30-40% in adults. To establish how aggressive the disease is, further chromosome testing is required to determine whether the cancer is myeloblastic and involves neutrophils, eosinophils or basophils, or lymphoblastic involving B or T lymphocytes. This case study is on a 14-year-old patient diagnosed with a very aggressive form of ALL (positive for the Philadelphia chromosome mutation). A standard bone marrow transplant, aggressive chemotherapy and radiation therapy were revoked, with treatment being deemed a failure after 34 months. Without any other solutions provided by conventional approaches aside from palliation, the family administered cannabinoid extracts orally to the patient. Cannabinoid resin extract is used as an effective treatment for ALL with a positive Philadelphia chromosome mutation and indications of dose-dependent disease control. The clinical observation in this study revealed a rapid dose-dependent correlation.

KEYWORDS:

Acute lymphoblastic leukemia, Cannabinoids, Hemp oil, Philadelphia chromosome

 

Monday, November 25, 2013

THC May Treat Inflammatory Diseases and Cancer By Altering Genes

http://www.jbc.org/content/early/2013/11/07/jbc.M113.503037.short#ref-list-1

An intriguing new government funded study published by the Journal of Biological Chemistry has found that THC may actually alter certain genes in our body, which may result in a positive effect on a number of conditions, especially cancers and inflammatory diseases.

Researchers using rat models found that THC positively altered 13 different microRNAs, including mir-690, which is strongly linked to inflammatory responses; the study claims that; “Among the differentially expressed, miRNA-690 was highly overexpressed in THC-MDSC (~16 fold)”.
According to researchers; “Select miRNA such as mir-690 targeting genes involved in myeloid expansion and differentiation likely play crucial roles in this process and therefore in cannabinoid-induced immunosuppression.”
They conclude that these results indicate that THC may treat “inflammatory diseases as well as cancer.”
The study was funded by the U.S. National Institute of Health.

Monday, October 28, 2013

Cannabis may help reverse dementia: study


Cannabis may help reverse dementia: study

Cannabis may help reverse dementia: study

Date
February 6, 2013

Amy Corderoy
Amy Corderoy
Health Editor, Sydney Morning Herald

View more articles from Amy Corderoy

It makes most people a little foggy-headed, but scientists are investigating whether an active ingredient in cannabis could actually stave off dementia.

A team from Neuroscience Research Australia is in the early stages of research examining if one of the main active ingredients in cannabis, called cannabidiol, could reverse some of the symptoms of memory loss in animals.

Tim Karl, a senior research fellow with the group, said cannabidiol does not have the same psychoactive effects as the main component of marijuana, THC, but it has been found to have anti-inflammatory, antioxidant and other effects that could be beneficial for the brain.

“Back in the day cannabis was used for medical purposes, I'm talking 200 years, 100 years back, then at some point people discovered it had other effects and, as quite often happens in our society, people decided it was a bad drug,” he said.
Advertisement

“But it's not one compound, it is a mixture of 60 different compounds, and you just have to look at those different compounds because some of them might be good for you.”

His study involved injecting cannabidiol into mice that had been bred to have similar symptoms as those seen in Alzheimer's, as well as examining what would happen to brain cells treated with the drug.

Dr Karl found that when the mice were given the cannabidiol they showed drastic improvement on parts of the tests that were related to recognising and remembering objects and other mice.

“It basically brings the performance of the animals back to the level of healthy animals,” he said. “You could say it cured them, but we will have to go back and look at their brains to be sure.”

The study was done as part of the PhD of student David Cheng, who has also collected the brains of the mice and intends to examine them to see if they showed physical improvements.

As part of the research, which is being presented at the Australian Neuroscience Society annual meeting in Melbourne this week, the team also treated animal brain cells that produced a protein linked to the development of plaques in the brain in humans with Alzheimer's disease, amyloid precursor protein.

The cell research, done at the University of Wollongong, found treating the cells with cannabidiol also reduced the amount of the harmful protein that they produced.

Dr Karl said there had been case reports in medical literature of marijuana smokers who had developed Alzheimer's disease, only to find their smoking seemed to relieve some of their symptoms.

“Most of the components [of marijuana] are detrimental, they worsen your cognitive performance and have psychoactive effects… cannabidiol seems to not have any of these negative effects,” he said.

http://www.smh.com.au/national/cannabis-may-help-reverse-dementia-study-20130206-2dxsk.html#ixzz2j49Wiotc

Cannabinoids Destroy Leukemia Cells, New Study Finds

New research has shown that the non-hallucinogenic components of cannabis could act as effective anti-cancer agents.
The anti-cancer properties of tetrahydrocannabinol (THC), the primary hallucinogenic component of cannabis, has been recognised for many years, but research into similar cannabis-derived compounds, known as cannabinoids, has been limited.
The study was carried out by a team at St George’s, University of London. It has been published in the journal Anticancer Research.
The team, led by Dr Wai Liu and colleagues carried out laboratory investigations using a number of cannabinoids, either alone or in combination with each other, to measure their anti-cancer actions in relation to leukaemia.
Of six cannabinoids studied, each demonstrated anti-cancer properties as effective as those seen in THC. Importantly, they had an increased effect on cancer cells when combined with each other.
Dr Liu said: “This study is a critical step in unpicking the mysteries of cannabis as a source of medicine. The cannabinoids examined have minimal, if any, hallucinogenic side effects, and their properties as anti-cancer agents are promising.
“These agents are able to interfere with the development of cancerous cells, stopping them in their tracks and preventing them from growing. In some cases, by using specific dosage patterns, they can destroy cancer cells on their own.
“Used in combination with existing treatment, we could discover some highly effective strategies for tackling cancer. Significantly, these compounds are inexpensive to produce and making better use of their unique properties could result in much more cost effective anti-cancer drugs in future.”
This latest research is part of a growing portfolio of studies into the medicinal properties of cannabis by the research team at St George’s. The next step will be to examine in the laboratory these compounds in combination with existing anti-cancer treatments and study treatment schedules to identify strategies that will maximise their efficacy.
The study examined two forms of cannabidiol (CBD), two forms of cannabigerol (CBG) and two forms of cannabigevarin (CBGV). These represent the most common cannabinoids found in the cannabis plant apart from THC.
http://ar.iiarjournals.org/content/33/10/4373.abstract